Spatially confined catalysis-enhanced high-temperature carbon dioxide electrolysis.
نویسندگان
چکیده
In this study, a potential ilmenite cathode material Ni0.9TiO3 is designed for efficient CO2 electrolysis in an oxide-ion-conducting solid-oxide electrolyzer. Spatially confined catalysis has been successfully achieved to substantially improve cathode activity by in situ growth of catalytically active nickel nanoparticles on a ceramic skeleton. The combined analysis of XRD, SEM, EDS, XPS, TGA and Raman results together confirm that the growth of nickel catalyst is completely reversible in redox cycles. The n-type electrical properties of cathodes are systematically investigated and correlated to electrochemical performance. Efficient CO2 electrolysis with a Faraday efficiency above 90% has been demonstrated with Ni0.9TiO3 in contrast to 60% for a TiO2 cathode at 800 °C.
منابع مشابه
Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04966d Click here for additional data file.
Electrochemical promotion of catalysis (EPOC) has been shown to accelerate the rate of many heterogeneous catalytic reactions; however, it has rarely been reported in low-temperature aqueous electrochemical reactions. Herein, we report a significant EPOC effect for the CO2 reduction to generate formate over Pd nanoparticles (NPs) in a 1 M KHCO3 aqueous solution. By applying a negative potential...
متن کاملElectrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction.
Electrochemical promotion of catalysis (EPOC) has been shown to accelerate the rate of many heterogeneous catalytic reactions; however, it has rarely been reported in low-temperature aqueous electrochemical reactions. Herein, we report a significant EPOC effect for the CO2 reduction to generate formate over Pd nanoparticles (NPs) in a 1 M KHCO3 aqueous solution. By applying a negative potential...
متن کاملA composite cathode based on scandium doped titanate with enhanced electrocatalytic activity towards direct carbon dioxide electrolysis.
A composite cathode based on redox-stable La0.2Sr0.8TiO(3+δ) (LSTO) can perform direct carbon dioxide electrolysis; however, the insufficient electro-catalytic activity limits the electrode performances and current efficiencies. In this work, catalytically active scandium is doped into LSTO to enhance the electro-catalytic activity for CO2 electrolysis. The structures, electronic conductivities...
متن کاملEnhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures
Sustainable future energy scenarios require significant efficiency improvements in both electricity generation and storage. High-temperature solid oxide cells, and in particular carbon dioxide electrolysers, afford chemical storage of available electricity that can both stabilize and extend the utilization of renewables. Here we present a double doping strategy to facilitate CO2 reduction at pe...
متن کاملManganese Electrocatalysts with Bulky Bipyridine Ligands: Utilizing Lewis Acids To Promote Carbon Dioxide Reduction at Low Overpotentials.
Earth-abundant manganese bipyridine (bpy) complexes are well-established molecular electrocatalysts for proton-coupled carbon dioxide (CO2) reduction to carbon monoxide (CO). Recently, a bulky bipyridine ligand, 6,6'-dimesityl-2,2'-bipyridine (mesbpy), was utilized to significantly lower the potential necessary to access the doubly reduced states of these manganese catalysts by eliminating thei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 17 شماره
صفحات -
تاریخ انتشار 2015